Metamath Proof Explorer


Theorem 3bitrri

Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006)

Ref Expression
Hypotheses 3bitri.1
|- ( ph <-> ps )
3bitri.2
|- ( ps <-> ch )
3bitri.3
|- ( ch <-> th )
Assertion 3bitrri
|- ( th <-> ph )

Proof

Step Hyp Ref Expression
1 3bitri.1
 |-  ( ph <-> ps )
2 3bitri.2
 |-  ( ps <-> ch )
3 3bitri.3
 |-  ( ch <-> th )
4 1 2 bitr2i
 |-  ( ch <-> ph )
5 3 4 bitr3i
 |-  ( th <-> ph )