Metamath Proof Explorer


Theorem 3impd

Description: Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006)

Ref Expression
Hypothesis 3imp1.1
|- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )
Assertion 3impd
|- ( ph -> ( ( ps /\ ch /\ th ) -> ta ) )

Proof

Step Hyp Ref Expression
1 3imp1.1
 |-  ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )
2 1 com4l
 |-  ( ps -> ( ch -> ( th -> ( ph -> ta ) ) ) )
3 2 3imp
 |-  ( ( ps /\ ch /\ th ) -> ( ph -> ta ) )
4 3 com12
 |-  ( ph -> ( ( ps /\ ch /\ th ) -> ta ) )