Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3impdi.1 | |- ( ( ( ph /\ ps ) /\ ( ph /\ ch ) ) -> th )  | 
					|
| Assertion | 3impdi | |- ( ( ph /\ ps /\ ch ) -> th )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3impdi.1 | |- ( ( ( ph /\ ps ) /\ ( ph /\ ch ) ) -> th )  | 
						|
| 2 | 1 | anandis | |- ( ( ph /\ ( ps /\ ch ) ) -> th )  | 
						
| 3 | 2 | 3impb | |- ( ( ph /\ ps /\ ch ) -> th )  |