| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idn1 |
|- (. ( ( ph /\ ps /\ ch ) -> th ) ->. ( ( ph /\ ps /\ ch ) -> th ) ). |
| 2 |
|
df-3an |
|- ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) ) |
| 3 |
|
imbi1 |
|- ( ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) ) -> ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ( ( ph /\ ps ) /\ ch ) -> th ) ) ) |
| 4 |
3
|
biimpcd |
|- ( ( ( ph /\ ps /\ ch ) -> th ) -> ( ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) ) -> ( ( ( ph /\ ps ) /\ ch ) -> th ) ) ) |
| 5 |
1 2 4
|
e10 |
|- (. ( ( ph /\ ps /\ ch ) -> th ) ->. ( ( ( ph /\ ps ) /\ ch ) -> th ) ). |
| 6 |
|
pm3.3 |
|- ( ( ( ( ph /\ ps ) /\ ch ) -> th ) -> ( ( ph /\ ps ) -> ( ch -> th ) ) ) |
| 7 |
5 6
|
e1a |
|- (. ( ( ph /\ ps /\ ch ) -> th ) ->. ( ( ph /\ ps ) -> ( ch -> th ) ) ). |
| 8 |
|
pm3.3 |
|- ( ( ( ph /\ ps ) -> ( ch -> th ) ) -> ( ph -> ( ps -> ( ch -> th ) ) ) ) |
| 9 |
7 8
|
e1a |
|- (. ( ( ph /\ ps /\ ch ) -> th ) ->. ( ph -> ( ps -> ( ch -> th ) ) ) ). |
| 10 |
9
|
in1 |
|- ( ( ( ph /\ ps /\ ch ) -> th ) -> ( ph -> ( ps -> ( ch -> th ) ) ) ) |
| 11 |
|
idn1 |
|- (. ( ph -> ( ps -> ( ch -> th ) ) ) ->. ( ph -> ( ps -> ( ch -> th ) ) ) ). |
| 12 |
|
pm3.31 |
|- ( ( ph -> ( ps -> ( ch -> th ) ) ) -> ( ( ph /\ ps ) -> ( ch -> th ) ) ) |
| 13 |
11 12
|
e1a |
|- (. ( ph -> ( ps -> ( ch -> th ) ) ) ->. ( ( ph /\ ps ) -> ( ch -> th ) ) ). |
| 14 |
|
pm3.31 |
|- ( ( ( ph /\ ps ) -> ( ch -> th ) ) -> ( ( ( ph /\ ps ) /\ ch ) -> th ) ) |
| 15 |
13 14
|
e1a |
|- (. ( ph -> ( ps -> ( ch -> th ) ) ) ->. ( ( ( ph /\ ps ) /\ ch ) -> th ) ). |
| 16 |
3
|
biimprd |
|- ( ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) ) -> ( ( ( ( ph /\ ps ) /\ ch ) -> th ) -> ( ( ph /\ ps /\ ch ) -> th ) ) ) |
| 17 |
2 15 16
|
e01 |
|- (. ( ph -> ( ps -> ( ch -> th ) ) ) ->. ( ( ph /\ ps /\ ch ) -> th ) ). |
| 18 |
17
|
in1 |
|- ( ( ph -> ( ps -> ( ch -> th ) ) ) -> ( ( ph /\ ps /\ ch ) -> th ) ) |
| 19 |
|
impbi |
|- ( ( ( ( ph /\ ps /\ ch ) -> th ) -> ( ph -> ( ps -> ( ch -> th ) ) ) ) -> ( ( ( ph -> ( ps -> ( ch -> th ) ) ) -> ( ( ph /\ ps /\ ch ) -> th ) ) -> ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ph -> ( ps -> ( ch -> th ) ) ) ) ) ) |
| 20 |
10 18 19
|
e00 |
|- ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ph -> ( ps -> ( ch -> th ) ) ) ) |