Metamath Proof Explorer


Theorem 8m1e7

Description: 8 - 1 = 7. (Contributed by AV, 6-Sep-2021)

Ref Expression
Assertion 8m1e7
|- ( 8 - 1 ) = 7

Proof

Step Hyp Ref Expression
1 7cn
 |-  7 e. CC
2 ax-1cn
 |-  1 e. CC
3 df-8
 |-  8 = ( 7 + 1 )
4 1 2 3 mvrraddi
 |-  ( 8 - 1 ) = 7