Metamath Proof Explorer


Theorem 8p6e14

Description: 8 + 6 = 14. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 8p6e14
|- ( 8 + 6 ) = ; 1 4

Proof

Step Hyp Ref Expression
1 8nn0
 |-  8 e. NN0
2 5nn0
 |-  5 e. NN0
3 3nn0
 |-  3 e. NN0
4 df-6
 |-  6 = ( 5 + 1 )
5 df-4
 |-  4 = ( 3 + 1 )
6 8p5e13
 |-  ( 8 + 5 ) = ; 1 3
7 1 2 3 4 5 6 6p5lem
 |-  ( 8 + 6 ) = ; 1 4