Metamath Proof Explorer


Theorem 8p8e16

Description: 8 + 8 = 16. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 8p8e16
|- ( 8 + 8 ) = ; 1 6

Proof

Step Hyp Ref Expression
1 8nn0
 |-  8 e. NN0
2 7nn0
 |-  7 e. NN0
3 5nn0
 |-  5 e. NN0
4 df-8
 |-  8 = ( 7 + 1 )
5 df-6
 |-  6 = ( 5 + 1 )
6 8p7e15
 |-  ( 8 + 7 ) = ; 1 5
7 1 2 3 4 5 6 6p5lem
 |-  ( 8 + 8 ) = ; 1 6