Metamath Proof Explorer


Theorem a1d

Description: Deduction introducing an embedded antecedent. Deduction form of ax-1 and a1i . (Contributed by NM, 5-Jan-1993) (Proof shortened by Stefan Allan, 20-Mar-2006)

Ref Expression
Hypothesis a1d.1
|- ( ph -> ps )
Assertion a1d
|- ( ph -> ( ch -> ps ) )

Proof

Step Hyp Ref Expression
1 a1d.1
 |-  ( ph -> ps )
2 ax-1
 |-  ( ps -> ( ch -> ps ) )
3 1 2 syl
 |-  ( ph -> ( ch -> ps ) )