| Step |
Hyp |
Ref |
Expression |
| 1 |
|
absnpncan3d.a |
|- ( ph -> A e. CC ) |
| 2 |
|
absnpncan3d.b |
|- ( ph -> B e. CC ) |
| 3 |
|
absnpncan3d.c |
|- ( ph -> C e. CC ) |
| 4 |
|
absnpncan3d.d |
|- ( ph -> D e. CC ) |
| 5 |
|
absnpncan3d.e |
|- ( ph -> E e. CC ) |
| 6 |
1 5
|
subcld |
|- ( ph -> ( A - E ) e. CC ) |
| 7 |
6
|
abscld |
|- ( ph -> ( abs ` ( A - E ) ) e. RR ) |
| 8 |
1 4
|
subcld |
|- ( ph -> ( A - D ) e. CC ) |
| 9 |
8
|
abscld |
|- ( ph -> ( abs ` ( A - D ) ) e. RR ) |
| 10 |
4 5
|
subcld |
|- ( ph -> ( D - E ) e. CC ) |
| 11 |
10
|
abscld |
|- ( ph -> ( abs ` ( D - E ) ) e. RR ) |
| 12 |
9 11
|
readdcld |
|- ( ph -> ( ( abs ` ( A - D ) ) + ( abs ` ( D - E ) ) ) e. RR ) |
| 13 |
1 2
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
| 14 |
13
|
abscld |
|- ( ph -> ( abs ` ( A - B ) ) e. RR ) |
| 15 |
2 3
|
subcld |
|- ( ph -> ( B - C ) e. CC ) |
| 16 |
15
|
abscld |
|- ( ph -> ( abs ` ( B - C ) ) e. RR ) |
| 17 |
14 16
|
readdcld |
|- ( ph -> ( ( abs ` ( A - B ) ) + ( abs ` ( B - C ) ) ) e. RR ) |
| 18 |
3 4
|
subcld |
|- ( ph -> ( C - D ) e. CC ) |
| 19 |
18
|
abscld |
|- ( ph -> ( abs ` ( C - D ) ) e. RR ) |
| 20 |
17 19
|
readdcld |
|- ( ph -> ( ( ( abs ` ( A - B ) ) + ( abs ` ( B - C ) ) ) + ( abs ` ( C - D ) ) ) e. RR ) |
| 21 |
20 11
|
readdcld |
|- ( ph -> ( ( ( ( abs ` ( A - B ) ) + ( abs ` ( B - C ) ) ) + ( abs ` ( C - D ) ) ) + ( abs ` ( D - E ) ) ) e. RR ) |
| 22 |
1 5 4
|
abs3difd |
|- ( ph -> ( abs ` ( A - E ) ) <_ ( ( abs ` ( A - D ) ) + ( abs ` ( D - E ) ) ) ) |
| 23 |
1 2 3 4
|
absnpncan2d |
|- ( ph -> ( abs ` ( A - D ) ) <_ ( ( ( abs ` ( A - B ) ) + ( abs ` ( B - C ) ) ) + ( abs ` ( C - D ) ) ) ) |
| 24 |
9 20 11 23
|
leadd1dd |
|- ( ph -> ( ( abs ` ( A - D ) ) + ( abs ` ( D - E ) ) ) <_ ( ( ( ( abs ` ( A - B ) ) + ( abs ` ( B - C ) ) ) + ( abs ` ( C - D ) ) ) + ( abs ` ( D - E ) ) ) ) |
| 25 |
7 12 21 22 24
|
letrd |
|- ( ph -> ( abs ` ( A - E ) ) <_ ( ( ( ( abs ` ( A - B ) ) + ( abs ` ( B - C ) ) ) + ( abs ` ( C - D ) ) ) + ( abs ` ( D - E ) ) ) ) |