Metamath Proof Explorer


Theorem abvpropd2

Description: Weaker version of abvpropd . (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses abvpropd2.1
|- ( ph -> ( Base ` K ) = ( Base ` L ) )
abvpropd2.2
|- ( ph -> ( +g ` K ) = ( +g ` L ) )
abvpropd2.3
|- ( ph -> ( .r ` K ) = ( .r ` L ) )
Assertion abvpropd2
|- ( ph -> ( AbsVal ` K ) = ( AbsVal ` L ) )

Proof

Step Hyp Ref Expression
1 abvpropd2.1
 |-  ( ph -> ( Base ` K ) = ( Base ` L ) )
2 abvpropd2.2
 |-  ( ph -> ( +g ` K ) = ( +g ` L ) )
3 abvpropd2.3
 |-  ( ph -> ( .r ` K ) = ( .r ` L ) )
4 eqidd
 |-  ( ph -> ( Base ` K ) = ( Base ` K ) )
5 2 oveqdr
 |-  ( ( ph /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) )
6 3 oveqdr
 |-  ( ( ph /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) )
7 4 1 5 6 abvpropd
 |-  ( ph -> ( AbsVal ` K ) = ( AbsVal ` L ) )