| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abvpropd2.1 |
|- ( ph -> ( Base ` K ) = ( Base ` L ) ) |
| 2 |
|
abvpropd2.2 |
|- ( ph -> ( +g ` K ) = ( +g ` L ) ) |
| 3 |
|
abvpropd2.3 |
|- ( ph -> ( .r ` K ) = ( .r ` L ) ) |
| 4 |
|
eqidd |
|- ( ph -> ( Base ` K ) = ( Base ` K ) ) |
| 5 |
2
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
| 6 |
3
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
| 7 |
4 1 5 6
|
abvpropd |
|- ( ph -> ( AbsVal ` K ) = ( AbsVal ` L ) ) |