Description: Deduction adding 10 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by Wolf Lammen, 5-Apr-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ad2ant.1 | |- ( ph -> ps ) |
|
| Assertion | ad10antr | |- ( ( ( ( ( ( ( ( ( ( ( ph /\ ch ) /\ th ) /\ ta ) /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) /\ ka ) -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | |- ( ph -> ps ) |
|
| 2 | 1 | adantr | |- ( ( ph /\ ch ) -> ps ) |
| 3 | 2 | ad9antr | |- ( ( ( ( ( ( ( ( ( ( ( ph /\ ch ) /\ th ) /\ ta ) /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) /\ ka ) -> ps ) |