Metamath Proof Explorer


Theorem ad2ant2lr

Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007)

Ref Expression
Hypothesis ad2ant2.1
|- ( ( ph /\ ps ) -> ch )
Assertion ad2ant2lr
|- ( ( ( th /\ ph ) /\ ( ps /\ ta ) ) -> ch )

Proof

Step Hyp Ref Expression
1 ad2ant2.1
 |-  ( ( ph /\ ps ) -> ch )
2 1 adantrr
 |-  ( ( ph /\ ( ps /\ ta ) ) -> ch )
3 2 adantll
 |-  ( ( ( th /\ ph ) /\ ( ps /\ ta ) ) -> ch )