Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999) (Proof shortened by Wolf Lammen, 20-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ad2ant.1 | |- ( ph -> ps ) |
|
| Assertion | ad2antlr | |- ( ( ( ch /\ ph ) /\ th ) -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | |- ( ph -> ps ) |
|
| 2 | 1 | adantr | |- ( ( ph /\ th ) -> ps ) |
| 3 | 2 | adantll | |- ( ( ( ch /\ ph ) /\ th ) -> ps ) |