Metamath Proof Explorer


Theorem ad4ant24

Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 14-Apr-2022)

Ref Expression
Hypothesis ad4ant2.1
|- ( ( ph /\ ps ) -> ch )
Assertion ad4ant24
|- ( ( ( ( th /\ ph ) /\ ta ) /\ ps ) -> ch )

Proof

Step Hyp Ref Expression
1 ad4ant2.1
 |-  ( ( ph /\ ps ) -> ch )
2 1 adantlr
 |-  ( ( ( ph /\ ta ) /\ ps ) -> ch )
3 2 adantlll
 |-  ( ( ( ( th /\ ph ) /\ ta ) /\ ps ) -> ch )