Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 14-Apr-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ad5ant2.1 | |- ( ( ph /\ ps ) -> ch ) |
|
| Assertion | ad5ant25 | |- ( ( ( ( ( th /\ ph ) /\ ta ) /\ et ) /\ ps ) -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad5ant2.1 | |- ( ( ph /\ ps ) -> ch ) |
|
| 2 | 1 | adantll | |- ( ( ( th /\ ph ) /\ ps ) -> ch ) |
| 3 | 2 | ad4ant14 | |- ( ( ( ( ( th /\ ph ) /\ ta ) /\ et ) /\ ps ) -> ch ) |