Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad . Consequence of addcan2d . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | muld.1 | |- ( ph -> A e. CC ) |
|
| addcomd.2 | |- ( ph -> B e. CC ) |
||
| addcand.3 | |- ( ph -> C e. CC ) |
||
| addneintr2d.4 | |- ( ph -> A =/= B ) |
||
| Assertion | addneintr2d | |- ( ph -> ( A + C ) =/= ( B + C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | |- ( ph -> A e. CC ) |
|
| 2 | addcomd.2 | |- ( ph -> B e. CC ) |
|
| 3 | addcand.3 | |- ( ph -> C e. CC ) |
|
| 4 | addneintr2d.4 | |- ( ph -> A =/= B ) |
|
| 5 | 1 2 3 | addcan2d | |- ( ph -> ( ( A + C ) = ( B + C ) <-> A = B ) ) |
| 6 | 5 | necon3bid | |- ( ph -> ( ( A + C ) =/= ( B + C ) <-> A =/= B ) ) |
| 7 | 4 6 | mpbird | |- ( ph -> ( A + C ) =/= ( B + C ) ) |