Description: Given a is equivalent to T. , there exists a proof for a. (Contributed by Jarvin Udandy, 30-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | aistia.1 | |- ( ph <-> T. ) |
|
| Assertion | aistia | |- ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aistia.1 | |- ( ph <-> T. ) |
|
| 2 | tbtru | |- ( ph <-> ( ph <-> T. ) ) |
|
| 3 | 1 2 | mpbir | |- ph |