Metamath Proof Explorer


Theorem al2imi

Description: Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 10-Jan-1993)

Ref Expression
Hypothesis al2imi.1
|- ( ph -> ( ps -> ch ) )
Assertion al2imi
|- ( A. x ph -> ( A. x ps -> A. x ch ) )

Proof

Step Hyp Ref Expression
1 al2imi.1
 |-  ( ph -> ( ps -> ch ) )
2 al2im
 |-  ( A. x ( ph -> ( ps -> ch ) ) -> ( A. x ph -> ( A. x ps -> A. x ch ) ) )
3 2 1 mpg
 |-  ( A. x ph -> ( A. x ps -> A. x ch ) )