| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rdglim2a |
|- ( ( A e. V /\ Lim A ) -> ( rec ( har , _om ) ` A ) = U_ x e. A ( rec ( har , _om ) ` x ) ) |
| 2 |
|
df-aleph |
|- aleph = rec ( har , _om ) |
| 3 |
2
|
fveq1i |
|- ( aleph ` A ) = ( rec ( har , _om ) ` A ) |
| 4 |
2
|
fveq1i |
|- ( aleph ` x ) = ( rec ( har , _om ) ` x ) |
| 5 |
4
|
a1i |
|- ( x e. A -> ( aleph ` x ) = ( rec ( har , _om ) ` x ) ) |
| 6 |
5
|
iuneq2i |
|- U_ x e. A ( aleph ` x ) = U_ x e. A ( rec ( har , _om ) ` x ) |
| 7 |
1 3 6
|
3eqtr4g |
|- ( ( A e. V /\ Lim A ) -> ( aleph ` A ) = U_ x e. A ( aleph ` x ) ) |