Metamath Proof Explorer


Theorem alimi

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Jan-1993)

Ref Expression
Hypothesis alimi.1
|- ( ph -> ps )
Assertion alimi
|- ( A. x ph -> A. x ps )

Proof

Step Hyp Ref Expression
1 alimi.1
 |-  ( ph -> ps )
2 alim
 |-  ( A. x ( ph -> ps ) -> ( A. x ph -> A. x ps ) )
3 2 1 mpg
 |-  ( A. x ph -> A. x ps )