Metamath Proof Explorer


Theorem alrimiv

Description: Inference form of Theorem 19.21 of Margaris p. 90. See 19.21 and 19.21v . (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis alrimiv.1
|- ( ph -> ps )
Assertion alrimiv
|- ( ph -> A. x ps )

Proof

Step Hyp Ref Expression
1 alrimiv.1
 |-  ( ph -> ps )
2 ax-5
 |-  ( ph -> A. x ph )
3 2 1 alrimih
 |-  ( ph -> A. x ps )