Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994) (Proof shortened by Wolf Lammen, 7-Dec-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | anc2ri.1 | |- ( ph -> ( ps -> ch ) ) |
|
Assertion | anc2ri | |- ( ph -> ( ps -> ( ch /\ ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anc2ri.1 | |- ( ph -> ( ps -> ch ) ) |
|
2 | id | |- ( ph -> ph ) |
|
3 | 1 2 | jctird | |- ( ph -> ( ps -> ( ch /\ ph ) ) ) |