Metamath Proof Explorer


Theorem angcld

Description: The (signed) angle between two vectors is in ( -upi (,] pi ) . Deduction form. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses ang.1
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) )
angcld.1
|- ( ph -> X e. CC )
angcld.2
|- ( ph -> X =/= 0 )
angcld.3
|- ( ph -> Y e. CC )
angcld.4
|- ( ph -> Y =/= 0 )
Assertion angcld
|- ( ph -> ( X F Y ) e. ( -u _pi (,] _pi ) )

Proof

Step Hyp Ref Expression
1 ang.1
 |-  F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) )
2 angcld.1
 |-  ( ph -> X e. CC )
3 angcld.2
 |-  ( ph -> X =/= 0 )
4 angcld.3
 |-  ( ph -> Y e. CC )
5 angcld.4
 |-  ( ph -> Y =/= 0 )
6 1 2 3 4 5 angvald
 |-  ( ph -> ( X F Y ) = ( Im ` ( log ` ( Y / X ) ) ) )
7 4 2 3 divcld
 |-  ( ph -> ( Y / X ) e. CC )
8 4 2 5 3 divne0d
 |-  ( ph -> ( Y / X ) =/= 0 )
9 7 8 logimclad
 |-  ( ph -> ( Im ` ( log ` ( Y / X ) ) ) e. ( -u _pi (,] _pi ) )
10 6 9 eqeltrd
 |-  ( ph -> ( X F Y ) e. ( -u _pi (,] _pi ) )