Description: Deduction deriving nested implications from conjunctions. (Contributed by AV, 21-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | animpimp2impd.1 | |- ( ( ps /\ ph ) -> ( ch -> ( th -> et ) ) ) |
|
animpimp2impd.2 | |- ( ( ps /\ ( ph /\ th ) ) -> ( et -> ta ) ) |
||
Assertion | animpimp2impd | |- ( ph -> ( ( ps -> ch ) -> ( ps -> ( th -> ta ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | animpimp2impd.1 | |- ( ( ps /\ ph ) -> ( ch -> ( th -> et ) ) ) |
|
2 | animpimp2impd.2 | |- ( ( ps /\ ( ph /\ th ) ) -> ( et -> ta ) ) |
|
3 | 2 | expr | |- ( ( ps /\ ph ) -> ( th -> ( et -> ta ) ) ) |
4 | 3 | a2d | |- ( ( ps /\ ph ) -> ( ( th -> et ) -> ( th -> ta ) ) ) |
5 | 1 4 | syld | |- ( ( ps /\ ph ) -> ( ch -> ( th -> ta ) ) ) |
6 | 5 | expcom | |- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) ) |
7 | 6 | a2d | |- ( ph -> ( ( ps -> ch ) -> ( ps -> ( th -> ta ) ) ) ) |