Metamath Proof Explorer


Theorem aprilfools2025

Description: An abuse of notation. (Contributed by Prof. Loof Lirpa, 1-Apr-2025) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion aprilfools2025
|- { <" A p r i l "> , <" f o o l s ! "> } e. _V

Proof

Step Hyp Ref Expression
1 s4cli
 |-  <" <" <" N e v e r "> <" g o n n a "> <" g i v e "> <" y o u "> <" u p "> "> <" <" N e v e r "> <" g o n n a "> <" l e t "> <" y o u "> <" d o w n "> "> <" <" N e v e r "> <" g o n n a "> <" t u r n "> <" a r o u n d "> <" a n d "> "> <" <" d e s e r t "> <" y o u ! "> "> "> e. Word _V
2 prex
 |-  { <" A p r i l "> , <" f o o l s ! "> } e. _V
3 1 2 iddii
 |-  { <" A p r i l "> , <" f o o l s ! "> } e. _V