Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of Apostol p. 26. (Contributed by Glauco Siliprandi, 1-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | archd.1 | |- ( ph -> A e. RR ) |
|
| Assertion | archd | |- ( ph -> E. n e. NN A < n ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | archd.1 | |- ( ph -> A e. RR ) |
|
| 2 | arch | |- ( A e. RR -> E. n e. NN A < n ) |
|
| 3 | 1 2 | syl | |- ( ph -> E. n e. NN A < n ) |