Metamath Proof Explorer


Theorem assaascl0

Description: The scalar 0 embedded into an associative algebra corresponds to the 0 of the associative algebra. (Contributed by AV, 31-Jul-2019)

Ref Expression
Hypotheses assaascl0.a
|- A = ( algSc ` W )
assaascl0.f
|- F = ( Scalar ` W )
assaascl0.w
|- ( ph -> W e. AssAlg )
Assertion assaascl0
|- ( ph -> ( A ` ( 0g ` F ) ) = ( 0g ` W ) )

Proof

Step Hyp Ref Expression
1 assaascl0.a
 |-  A = ( algSc ` W )
2 assaascl0.f
 |-  F = ( Scalar ` W )
3 assaascl0.w
 |-  ( ph -> W e. AssAlg )
4 assalmod
 |-  ( W e. AssAlg -> W e. LMod )
5 3 4 syl
 |-  ( ph -> W e. LMod )
6 assaring
 |-  ( W e. AssAlg -> W e. Ring )
7 3 6 syl
 |-  ( ph -> W e. Ring )
8 1 2 5 7 ascl0
 |-  ( ph -> ( A ` ( 0g ` F ) ) = ( 0g ` W ) )