Description: The scalar 0 embedded into an associative algebra corresponds to the 0 of the associative algebra. (Contributed by AV, 31-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | assaascl0.a | |- A = ( algSc ` W ) | |
| assaascl0.f | |- F = ( Scalar ` W ) | ||
| assaascl0.w | |- ( ph -> W e. AssAlg ) | ||
| Assertion | assaascl0 | |- ( ph -> ( A ` ( 0g ` F ) ) = ( 0g ` W ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | assaascl0.a | |- A = ( algSc ` W ) | |
| 2 | assaascl0.f | |- F = ( Scalar ` W ) | |
| 3 | assaascl0.w | |- ( ph -> W e. AssAlg ) | |
| 4 | assalmod | |- ( W e. AssAlg -> W e. LMod ) | |
| 5 | 3 4 | syl | |- ( ph -> W e. LMod ) | 
| 6 | assaring | |- ( W e. AssAlg -> W e. Ring ) | |
| 7 | 3 6 | syl | |- ( ph -> W e. Ring ) | 
| 8 | 1 2 5 7 | ascl0 | |- ( ph -> ( A ` ( 0g ` F ) ) = ( 0g ` W ) ) |