Description: The scalar 0 embedded into an associative algebra corresponds to the 0 of the associative algebra. (Contributed by AV, 31-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | assaascl0.a | |- A = ( algSc ` W ) |
|
| assaascl0.f | |- F = ( Scalar ` W ) |
||
| assaascl0.w | |- ( ph -> W e. AssAlg ) |
||
| Assertion | assaascl0 | |- ( ph -> ( A ` ( 0g ` F ) ) = ( 0g ` W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | assaascl0.a | |- A = ( algSc ` W ) |
|
| 2 | assaascl0.f | |- F = ( Scalar ` W ) |
|
| 3 | assaascl0.w | |- ( ph -> W e. AssAlg ) |
|
| 4 | assalmod | |- ( W e. AssAlg -> W e. LMod ) |
|
| 5 | 3 4 | syl | |- ( ph -> W e. LMod ) |
| 6 | assaring | |- ( W e. AssAlg -> W e. Ring ) |
|
| 7 | 3 6 | syl | |- ( ph -> W e. Ring ) |
| 8 | 1 2 5 7 | ascl0 | |- ( ph -> ( A ` ( 0g ` F ) ) = ( 0g ` W ) ) |