Metamath Proof Explorer


Theorem axial

Description: The setvar x is not free in A. x ph (intuitionistic logic axiom ax-ial). (Contributed by Jim Kingdon, 31-Dec-2017) (New usage is discouraged.)

Ref Expression
Assertion axial
|- ( A. x ph -> A. x A. x ph )

Proof

Step Hyp Ref Expression
1 hba1
 |-  ( A. x ph -> A. x A. x ph )