Description: Transfer negation via an equivalence. (Contributed by NM, 3-Oct-2007) (Proof shortened by Wolf Lammen, 28-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bibif | |- ( -. ps -> ( ( ph <-> ps ) <-> -. ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbn2 | |- ( -. ps -> ( -. ph <-> ( ps <-> ph ) ) ) |
|
| 2 | bicom | |- ( ( ps <-> ph ) <-> ( ph <-> ps ) ) |
|
| 3 | 1 2 | bitr2di | |- ( -. ps -> ( ( ph <-> ps ) <-> -. ph ) ) |