Metamath Proof Explorer


Theorem biimp3a

Description: Infer implication from a logical equivalence. Similar to biimpa . (Contributed by NM, 4-Sep-2005)

Ref Expression
Hypothesis biimp3a.1
|- ( ( ph /\ ps ) -> ( ch <-> th ) )
Assertion biimp3a
|- ( ( ph /\ ps /\ ch ) -> th )

Proof

Step Hyp Ref Expression
1 biimp3a.1
 |-  ( ( ph /\ ps ) -> ( ch <-> th ) )
2 1 biimpa
 |-  ( ( ( ph /\ ps ) /\ ch ) -> th )
3 2 3impa
 |-  ( ( ph /\ ps /\ ch ) -> th )