Metamath Proof Explorer


Theorem biimtrrid

Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypotheses biimtrrid.1
|- ( ps <-> ph )
biimtrrid.2
|- ( ch -> ( ps -> th ) )
Assertion biimtrrid
|- ( ch -> ( ph -> th ) )

Proof

Step Hyp Ref Expression
1 biimtrrid.1
 |-  ( ps <-> ph )
2 biimtrrid.2
 |-  ( ch -> ( ps -> th ) )
3 1 biimpri
 |-  ( ph -> ps )
4 3 2 syl5
 |-  ( ch -> ( ph -> th ) )