| Step | Hyp | Ref | Expression | 
						
							| 1 |  | binomfallfaclem.1 |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | binomfallfaclem.2 |  |-  ( ph -> B e. CC ) | 
						
							| 3 |  | binomfallfaclem.3 |  |-  ( ph -> N e. NN0 ) | 
						
							| 4 |  | elfzelz |  |-  ( K e. ( 0 ... N ) -> K e. ZZ ) | 
						
							| 5 |  | bccl |  |-  ( ( N e. NN0 /\ K e. ZZ ) -> ( N _C K ) e. NN0 ) | 
						
							| 6 | 3 4 5 | syl2an |  |-  ( ( ph /\ K e. ( 0 ... N ) ) -> ( N _C K ) e. NN0 ) | 
						
							| 7 | 6 | nn0cnd |  |-  ( ( ph /\ K e. ( 0 ... N ) ) -> ( N _C K ) e. CC ) | 
						
							| 8 |  | fznn0sub |  |-  ( K e. ( 0 ... N ) -> ( N - K ) e. NN0 ) | 
						
							| 9 |  | fallfaccl |  |-  ( ( A e. CC /\ ( N - K ) e. NN0 ) -> ( A FallFac ( N - K ) ) e. CC ) | 
						
							| 10 | 1 8 9 | syl2an |  |-  ( ( ph /\ K e. ( 0 ... N ) ) -> ( A FallFac ( N - K ) ) e. CC ) | 
						
							| 11 |  | elfznn0 |  |-  ( K e. ( 0 ... N ) -> K e. NN0 ) | 
						
							| 12 |  | peano2nn0 |  |-  ( K e. NN0 -> ( K + 1 ) e. NN0 ) | 
						
							| 13 | 11 12 | syl |  |-  ( K e. ( 0 ... N ) -> ( K + 1 ) e. NN0 ) | 
						
							| 14 |  | fallfaccl |  |-  ( ( B e. CC /\ ( K + 1 ) e. NN0 ) -> ( B FallFac ( K + 1 ) ) e. CC ) | 
						
							| 15 | 2 13 14 | syl2an |  |-  ( ( ph /\ K e. ( 0 ... N ) ) -> ( B FallFac ( K + 1 ) ) e. CC ) | 
						
							| 16 | 10 15 | mulcld |  |-  ( ( ph /\ K e. ( 0 ... N ) ) -> ( ( A FallFac ( N - K ) ) x. ( B FallFac ( K + 1 ) ) ) e. CC ) | 
						
							| 17 | 7 16 | mulcld |  |-  ( ( ph /\ K e. ( 0 ... N ) ) -> ( ( N _C K ) x. ( ( A FallFac ( N - K ) ) x. ( B FallFac ( K + 1 ) ) ) ) e. CC ) |