Metamath Proof Explorer


Theorem bj-1upleq

Description: Substitution property for (| - |) . (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-1upleq
|- ( A = B -> (| A |) = (| B |) )

Proof

Step Hyp Ref Expression
1 bj-xtageq
 |-  ( A = B -> ( { (/) } X. tag A ) = ( { (/) } X. tag B ) )
2 df-bj-1upl
 |-  (| A |) = ( { (/) } X. tag A )
3 df-bj-1upl
 |-  (| B |) = ( { (/) } X. tag B )
4 1 2 3 3eqtr4g
 |-  ( A = B -> (| A |) = (| B |) )