Description: Shorter proof of abf (which should be kept as abfALT). (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bj-abf.1 | |- -. ph |
|
| Assertion | bj-abf | |- { x | ph } = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-abf.1 | |- -. ph |
|
| 2 | bj-ab0 | |- ( A. x -. ph -> { x | ph } = (/) ) |
|
| 3 | 2 1 | mpg | |- { x | ph } = (/) |