Metamath Proof Explorer


Theorem bj-axc4

Description: Over minimal calculus, the modal axiom (4) ( hba1 ) and the modal axiom (K) ( ax-4 ) together imply axc4 . (Contributed by BJ, 29-Nov-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-axc4
|- ( ( A. x ph -> A. x A. x ph ) -> ( ( A. x ( A. x ph -> ps ) -> ( A. x A. x ph -> A. x ps ) ) -> ( A. x ( A. x ph -> ps ) -> ( A. x ph -> A. x ps ) ) ) )

Proof

Step Hyp Ref Expression
1 bj-imim21
 |-  ( ( A. x ph -> A. x A. x ph ) -> ( ( A. x ( A. x ph -> ps ) -> ( A. x A. x ph -> A. x ps ) ) -> ( A. x ( A. x ph -> ps ) -> ( A. x ph -> A. x ps ) ) ) )