Metamath Proof Explorer


Theorem bj-axd2d

Description: This implication, proved using only ax-gen on top of propositional calculus (hence holding, up to the standard interpretation, in any modal logic), shows that the axiom scheme |- ( A. x ph -> E. x ph ) implies the axiom scheme |- E. x T. . These correspond to the modal axiom (D), and in predicate calculus, they assert that the universe of discourse is nonempty. For the converse, see bj-axdd2 . (Contributed by BJ, 16-May-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-axd2d
|- ( ( A. x T. -> E. x T. ) -> E. x T. )

Proof

Step Hyp Ref Expression
1 pm2.27
 |-  ( A. x T. -> ( ( A. x T. -> E. x T. ) -> E. x T. ) )
2 tru
 |-  T.
3 1 2 mpg
 |-  ( ( A. x T. -> E. x T. ) -> E. x T. )