Metamath Proof Explorer


Theorem bj-elequ12

Description: An identity law for the non-logical predicate, which combines elequ1 and elequ2 . For the analogous theorems for class terms, see eleq1 , eleq2 and eleq12 . TODO: move to main part. (Contributed by BJ, 29-Sep-2019)

Ref Expression
Assertion bj-elequ12
|- ( ( x = y /\ z = t ) -> ( x e. z <-> y e. t ) )

Proof

Step Hyp Ref Expression
1 elequ1
 |-  ( x = y -> ( x e. z <-> y e. z ) )
2 elequ2
 |-  ( z = t -> ( y e. z <-> y e. t ) )
3 1 2 sylan9bb
 |-  ( ( x = y /\ z = t ) -> ( x e. z <-> y e. t ) )