Description: A Fol lemma ( exlimiv followed by mpi ). (Contributed by BJ, 2-Jul-2022) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-exlimvmpi.maj | |- ( ch -> ( ph -> ps ) ) |
|
| bj-exlimvmpi.min | |- ph |
||
| Assertion | bj-exlimvmpi | |- ( E. x ch -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-exlimvmpi.maj | |- ( ch -> ( ph -> ps ) ) |
|
| 2 | bj-exlimvmpi.min | |- ph |
|
| 3 | 2 1 | mpi | |- ( ch -> ps ) |
| 4 | 3 | exlimiv | |- ( E. x ch -> ps ) |