Step |
Hyp |
Ref |
Expression |
1 |
|
eqimss |
|- ( A = B -> A C_ B ) |
2 |
|
df-ss |
|- ( A C_ B <-> ( A i^i B ) = A ) |
3 |
1 2
|
sylib |
|- ( A = B -> ( A i^i B ) = A ) |
4 |
|
eleq1 |
|- ( ( A i^i B ) = A -> ( ( A i^i B ) e. V <-> A e. V ) ) |
5 |
4
|
biimpac |
|- ( ( ( A i^i B ) e. V /\ ( A i^i B ) = A ) -> A e. V ) |
6 |
3 5
|
sylan2 |
|- ( ( ( A i^i B ) e. V /\ A = B ) -> A e. V ) |
7 |
6
|
elexd |
|- ( ( ( A i^i B ) e. V /\ A = B ) -> A e. _V ) |
8 |
|
eqimss2 |
|- ( A = B -> B C_ A ) |
9 |
|
sseqin2 |
|- ( B C_ A <-> ( A i^i B ) = B ) |
10 |
8 9
|
sylib |
|- ( A = B -> ( A i^i B ) = B ) |
11 |
|
eleq1 |
|- ( ( A i^i B ) = B -> ( ( A i^i B ) e. V <-> B e. V ) ) |
12 |
11
|
biimpac |
|- ( ( ( A i^i B ) e. V /\ ( A i^i B ) = B ) -> B e. V ) |
13 |
10 12
|
sylan2 |
|- ( ( ( A i^i B ) e. V /\ A = B ) -> B e. V ) |
14 |
13
|
elexd |
|- ( ( ( A i^i B ) e. V /\ A = B ) -> B e. _V ) |
15 |
7 14
|
jca |
|- ( ( ( A i^i B ) e. V /\ A = B ) -> ( A e. _V /\ B e. _V ) ) |