Metamath Proof Explorer


Theorem bj-inexeqex

Description: Lemma for bj-opelid (but not specific to the identity relation): if the intersection of two classes is a set and the two classes are equal, then both are sets (all three classes are equal, so they all belong to V , but it is more convenient to have _V in the consequent for theorems using it). (Contributed by BJ, 27-Dec-2023)

Ref Expression
Assertion bj-inexeqex
|- ( ( ( A i^i B ) e. V /\ A = B ) -> ( A e. _V /\ B e. _V ) )

Proof

Step Hyp Ref Expression
1 eqimss
 |-  ( A = B -> A C_ B )
2 df-ss
 |-  ( A C_ B <-> ( A i^i B ) = A )
3 1 2 sylib
 |-  ( A = B -> ( A i^i B ) = A )
4 eleq1
 |-  ( ( A i^i B ) = A -> ( ( A i^i B ) e. V <-> A e. V ) )
5 4 biimpac
 |-  ( ( ( A i^i B ) e. V /\ ( A i^i B ) = A ) -> A e. V )
6 3 5 sylan2
 |-  ( ( ( A i^i B ) e. V /\ A = B ) -> A e. V )
7 6 elexd
 |-  ( ( ( A i^i B ) e. V /\ A = B ) -> A e. _V )
8 eqimss2
 |-  ( A = B -> B C_ A )
9 sseqin2
 |-  ( B C_ A <-> ( A i^i B ) = B )
10 8 9 sylib
 |-  ( A = B -> ( A i^i B ) = B )
11 eleq1
 |-  ( ( A i^i B ) = B -> ( ( A i^i B ) e. V <-> B e. V ) )
12 11 biimpac
 |-  ( ( ( A i^i B ) e. V /\ ( A i^i B ) = B ) -> B e. V )
13 10 12 sylan2
 |-  ( ( ( A i^i B ) e. V /\ A = B ) -> B e. V )
14 13 elexd
 |-  ( ( ( A i^i B ) e. V /\ A = B ) -> B e. _V )
15 7 14 jca
 |-  ( ( ( A i^i B ) e. V /\ A = B ) -> ( A e. _V /\ B e. _V ) )