Description: A theorem close to a closed form of nf5d and nf5dh . (Contributed by BJ, 2-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-nfdt0 | |- ( A. x ( ph -> ( ps -> A. x ps ) ) -> ( A. x ph -> F/ x ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alim | |- ( A. x ( ph -> ( ps -> A. x ps ) ) -> ( A. x ph -> A. x ( ps -> A. x ps ) ) ) |
|
2 | nf5 | |- ( F/ x ps <-> A. x ( ps -> A. x ps ) ) |
|
3 | 1 2 | syl6ibr | |- ( A. x ( ph -> ( ps -> A. x ps ) ) -> ( A. x ph -> F/ x ps ) ) |