Metamath Proof Explorer


Theorem bj-nnfa1

Description: See nfa1 . (Contributed by BJ, 12-Aug-2023) (Proof modification is discouraged.)

Ref Expression
Assertion bj-nnfa1
|- F// x A. x ph

Proof

Step Hyp Ref Expression
1 hbe1a
 |-  ( E. x A. x ph -> A. x ph )
2 bj-modal4
 |-  ( A. x ph -> A. x A. x ph )
3 df-bj-nnf
 |-  ( F// x A. x ph <-> ( ( E. x A. x ph -> A. x ph ) /\ ( A. x ph -> A. x A. x ph ) ) )
4 1 2 3 mpbir2an
 |-  F// x A. x ph