Description: See nfa1 . (Contributed by BJ, 12-Aug-2023) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-nnfa1 | |- F// x A. x ph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbe1a | |- ( E. x A. x ph -> A. x ph ) |
|
2 | bj-modal4 | |- ( A. x ph -> A. x A. x ph ) |
|
3 | df-bj-nnf | |- ( F// x A. x ph <-> ( ( E. x A. x ph -> A. x ph ) /\ ( A. x ph -> A. x A. x ph ) ) ) |
|
4 | 1 2 3 | mpbir2an | |- F// x A. x ph |