Description: One of four lemmas for nonfreeness: antecedent expressed with existential quantifier and consequent expressed with universal quantifier. (Contributed by BJ, 12-Aug-2023) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-nnflemea | |- ( A. x ( E. y ph -> ph ) -> ( E. y A. x ph -> A. x ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-19.12 | |- ( E. y A. x ph -> A. x E. y ph ) |
|
2 | alim | |- ( A. x ( E. y ph -> ph ) -> ( A. x E. y ph -> A. x ph ) ) |
|
3 | 1 2 | syl5 | |- ( A. x ( E. y ph -> ph ) -> ( E. y A. x ph -> A. x ph ) ) |