Metamath Proof Explorer


Theorem bj-nnflemea

Description: One of four lemmas for nonfreeness: antecedent expressed with existential quantifier and consequent expressed with universal quantifier. (Contributed by BJ, 12-Aug-2023) (Proof modification is discouraged.)

Ref Expression
Assertion bj-nnflemea
|- ( A. x ( E. y ph -> ph ) -> ( E. y A. x ph -> A. x ph ) )

Proof

Step Hyp Ref Expression
1 bj-19.12
 |-  ( E. y A. x ph -> A. x E. y ph )
2 alim
 |-  ( A. x ( E. y ph -> ph ) -> ( A. x E. y ph -> A. x ph ) )
3 1 2 syl5
 |-  ( A. x ( E. y ph -> ph ) -> ( E. y A. x ph -> A. x ph ) )