Metamath Proof Explorer


Theorem bj-rvecssmod

Description: Real vector spaces are modules. (Contributed by BJ, 6-Jan-2024)

Ref Expression
Assertion bj-rvecssmod
|- RRVec C_ LMod

Proof

Step Hyp Ref Expression
1 bj-rvecmod
 |-  ( x e. RRVec -> x e. LMod )
2 1 ssriv
 |-  RRVec C_ LMod