Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj1211.1 | |- ( ph -> A. x e. A ps ) |
|
| Assertion | bnj1211 | |- ( ph -> A. x ( x e. A -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1211.1 | |- ( ph -> A. x e. A ps ) |
|
| 2 | df-ral | |- ( A. x e. A ps <-> A. x ( x e. A -> ps ) ) |
|
| 3 | 1 2 | sylib | |- ( ph -> A. x ( x e. A -> ps ) ) |