Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj1232.1 | |- ( ph <-> ( ps /\ ch /\ th /\ ta ) ) |
|
| Assertion | bnj1232 | |- ( ph -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1232.1 | |- ( ph <-> ( ps /\ ch /\ th /\ ta ) ) |
|
| 2 | bnj642 | |- ( ( ps /\ ch /\ th /\ ta ) -> ps ) |
|
| 3 | 1 2 | sylbi | |- ( ph -> ps ) |