Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj1254.1 | |- ( ph <-> ( ps /\ ch /\ th /\ ta ) ) |
|
Assertion | bnj1254 | |- ( ph -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1254.1 | |- ( ph <-> ( ps /\ ch /\ th /\ ta ) ) |
|
2 | id | |- ( ta -> ta ) |
|
3 | 2 | bnj708 | |- ( ( ps /\ ch /\ th /\ ta ) -> ta ) |
4 | 1 3 | sylbi | |- ( ph -> ta ) |