Metamath Proof Explorer


Theorem bnj1254

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1254.1
|- ( ph <-> ( ps /\ ch /\ th /\ ta ) )
Assertion bnj1254
|- ( ph -> ta )

Proof

Step Hyp Ref Expression
1 bnj1254.1
 |-  ( ph <-> ( ps /\ ch /\ th /\ ta ) )
2 id
 |-  ( ta -> ta )
3 2 bnj708
 |-  ( ( ps /\ ch /\ th /\ ta ) -> ta )
4 1 3 sylbi
 |-  ( ph -> ta )