Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1340.1 | |- ( ps -> E. x th ) |
|
bnj1340.2 | |- ( ch <-> ( ps /\ th ) ) |
||
bnj1340.3 | |- ( ps -> A. x ps ) |
||
Assertion | bnj1340 | |- ( ps -> E. x ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1340.1 | |- ( ps -> E. x th ) |
|
2 | bnj1340.2 | |- ( ch <-> ( ps /\ th ) ) |
|
3 | bnj1340.3 | |- ( ps -> A. x ps ) |
|
4 | 3 1 | bnj596 | |- ( ps -> E. x ( ps /\ th ) ) |
5 | 4 2 | bnj1198 | |- ( ps -> E. x ch ) |