Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnj1340.1 | |- ( ps -> E. x th ) |
|
| bnj1340.2 | |- ( ch <-> ( ps /\ th ) ) |
||
| bnj1340.3 | |- ( ps -> A. x ps ) |
||
| Assertion | bnj1340 | |- ( ps -> E. x ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1340.1 | |- ( ps -> E. x th ) |
|
| 2 | bnj1340.2 | |- ( ch <-> ( ps /\ th ) ) |
|
| 3 | bnj1340.3 | |- ( ps -> A. x ps ) |
|
| 4 | 3 1 | bnj596 | |- ( ps -> E. x ( ps /\ th ) ) |
| 5 | 4 2 | bnj1198 | |- ( ps -> E. x ch ) |