Metamath Proof Explorer


Theorem bnj1340

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1340.1
|- ( ps -> E. x th )
bnj1340.2
|- ( ch <-> ( ps /\ th ) )
bnj1340.3
|- ( ps -> A. x ps )
Assertion bnj1340
|- ( ps -> E. x ch )

Proof

Step Hyp Ref Expression
1 bnj1340.1
 |-  ( ps -> E. x th )
2 bnj1340.2
 |-  ( ch <-> ( ps /\ th ) )
3 bnj1340.3
 |-  ( ps -> A. x ps )
4 3 1 bnj596
 |-  ( ps -> E. x ( ps /\ th ) )
5 4 2 bnj1198
 |-  ( ps -> E. x ch )