Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj1352.1 | |- ( ps -> A. x ps ) |
|
| Assertion | bnj1352 | |- ( ( ph /\ ps ) -> A. x ( ph /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1352.1 | |- ( ps -> A. x ps ) |
|
| 2 | ax-5 | |- ( ph -> A. x ph ) |
|
| 3 | 2 1 | hban | |- ( ( ph /\ ps ) -> A. x ( ph /\ ps ) ) |