Metamath Proof Explorer
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
bnj1397.1 |
|- ( ph -> E. x ps ) |
|
|
bnj1397.2 |
|- ( ps -> A. x ps ) |
|
Assertion |
bnj1397 |
|- ( ph -> ps ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1397.1 |
|- ( ph -> E. x ps ) |
| 2 |
|
bnj1397.2 |
|- ( ps -> A. x ps ) |
| 3 |
2
|
19.9h |
|- ( E. x ps <-> ps ) |
| 4 |
1 3
|
sylib |
|- ( ph -> ps ) |