Metamath Proof Explorer


Theorem bnj1414

Description: Property of _trCl . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1414.1
|- B = ( _pred ( X , A , R ) u. U_ y e. _pred ( X , A , R ) _trCl ( y , A , R ) )
Assertion bnj1414
|- ( ( R _FrSe A /\ X e. A ) -> _trCl ( X , A , R ) = B )

Proof

Step Hyp Ref Expression
1 bnj1414.1
 |-  B = ( _pred ( X , A , R ) u. U_ y e. _pred ( X , A , R ) _trCl ( y , A , R ) )
2 eqid
 |-  ( _pred ( X , A , R ) u. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) ) = ( _pred ( X , A , R ) u. U_ y e. _trCl ( X , A , R ) _trCl ( y , A , R ) )
3 biid
 |-  ( ( R _FrSe A /\ X e. A ) <-> ( R _FrSe A /\ X e. A ) )
4 biid
 |-  ( ( B e. _V /\ _TrFo ( B , A , R ) /\ _pred ( X , A , R ) C_ B ) <-> ( B e. _V /\ _TrFo ( B , A , R ) /\ _pred ( X , A , R ) C_ B ) )
5 1 2 3 4 bnj1408
 |-  ( ( R _FrSe A /\ X e. A ) -> _trCl ( X , A , R ) = B )